pk ID Type Cite Edit
1 10.1016/j.biotechadv.2015.03.001 doi Yu-Jin Kim, Dabing Zhang & Deok-Chun Yang (2015). Biosynthesis and biotechnological production of ginsenosides. Biotechnology Advances.
2 10.1093/pcp/pcr150 doi Jung-Yeon Han, Hyun-Jung Kim, Yong-Soo Kwon & Yong-Eui Choi (2011). The Cyt P450 Enzyme CYP716A47 Catalyzes the Formation of Protopanaxadiol from Dammarenediol-II During Ginsenoside Biosynthesis in Panax ginseng. Plant & Cell Physiology.
3 10.1093/pcp/pcs106 doi Jung-Yeon Han, Hwan-Su Hwang, Su-Wan Choi, Hyun-Jung Kim & Yong-Eui Choi (2012). Cytochrome P450 CYP716A53v2 Catalyzes the Formation of Protopanaxatriol from Protopanaxadiol During Ginsenoside Biosynthesis in Panax Ginseng. Plant & Cell Physiology.
4 10.1002/bit.26473 doi Macarena Larroude, Ewelina Celinska, Alexandre Back, Stephan Thomas, Jean-Marc Nicaud & Rodrigo Ledesma-Amaro (2017). A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of β-carotene. Biotechnology & Bioengineering.
5 10.1111/1751-7915.12605 doi Ewelina Celińska, Rodrigo Ledesma-Amaro, Macarena Larroude, Tristan Rossignol, Cyrille Pauthenier & Jean-Marc Nicaud (2017). Golden Gate Assembly system dedicated to complex pathway manipulation in Yarrowia lipolytica. Microbial Biotechnology.
6 10.1186/s12934-020-01306-3 doi Nan, W., Zhao, F., Zhang, C. et al. (2020). Promotion of compound K production in Saccharomyces cerevisiae by glycerol . Microbial Cell Factories.
7 10.1038/s41586-019-0978-9 doi Xiaozhou Luo, Michael A. Reiter, Leo d’Espaux, Jeff Wong, Charles M. Denby, Anna Lechner, Yunfeng Zhang, Adrian T. Grzybowski, Simon Harth, Weiyin Lin, Hyunsu Lee, Changhua Yu, John Shin, Kai Deng, Veronica T. Benites, George Wang, Edward E. K. Baidoo, Yan Chen, Ishaan Dev, Christopher J. Petzold & Jay D. Keasling (2019). Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature.
8 10.1073/pnas.1200330109 doi S. J. Gagne, J. M. Stout, E. Liu, Z. Boubakir, S. M. Clark & J. E. Page (2012). Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. Proceedings of the National Academy of Sciences of the United States of America.
9 10.1128/JB.184.8.2116-2122.2002 doi M. Hedl, A. Sutherlin, E. I. Wilding, M. Mazzulla, D. McDevitt, P. Lane, J. W. Burgner, K. R. Lehnbeuter, C. V. Stauffacher, M. N. Gwynn & V. W. Rodwell (2002). Enterococcus faecalis Acetoacetyl-Coenzyme A Thiolase/3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase, a Dual-Function Protein of Isopentenyl Diphosphate Biosynthesis. Journal of Bacteriology.
10 10.1128/JB.184.15.4065-4070.2002 doi A. Sutherlin, M. Hedl, B. Sanchez-Neri, J. W. Burgner, C. V. Stauffacher & V. W. Rodwell (2002). Enterococcus faecalis 3-Hydroxy-3-Methylglutaryl Coenzyme A Synthase, an Enzyme of Isopentenyl Diphosphate Biosynthesis. Journal of Bacteriology.
11 10.1007/BF00362081 doi A. Oulmouden & F. Karst (1990). Nucleotide sequence of the ERG12 gene of Saccharomyces cerevisiae encoding mevalonate kinase. Current Genetics.
12 10.1016/j.jbiotec.2017.12.026 doi Jikun Du, Gongsoo Yang, Zi Wei Luo, Sang Yup Lee (2018). Metabolic engineering of Escherichia coli for the production of indirubin from glucose. Journal of Biotechnology.
13 10.1128/mcb.11.2.620 doi Y H Tsay & G W Robinson (1991). Cloning and characterization of ERG8, an essential gene of Saccharomyces cerevisiae that encodes phosphomevalonate kinase.. Molecular & Cellular Biology.
14 10.1074/jbc.271.14.7895 doi Matthew J. Toth & Leslie Huwyler (1996). Molecular Cloning and Expression of the cDNAs Encoding Human and Yeast Mevalonate Pyrophosphate Decarboxylase. Journal of Biological Chemistry.
15 10.1016/S0006-291X(03)01087-8 doi Hack Sun Choi, Jin Kwon Kim, Eun Hee Cho, Yong Chul Kim, Jae Il Kim & Si Wouk Kim (2003). A novel flavin-containing monooxygenase from Methylophaga sp. strain SK1 and its indigo synthesis in Escherichia coli. Biochemical & Biophysical Research Communications.
16 10.1016/j.jbiotec.2012.08.015 doi Gui Hwan Han, Geun Ho Gim, Wonduck Kim, Sun Il Seo, Si Wouk Kim (2013). Enhanced indirubin production in recombinant Escherichia coli harboring a flavin-containing monooxygenase gene by cysteine supplementation. Journal of Biotechnology.
17 10.1007/s10529-015-1824-2 doi Sis Patricia Lolita Ameria, Hye Sook Jung, Hee Sook Kim, Sang Soo Han, Hak Sung Kim & Jin Ho Lee (2015). Characterization of a flavin-containing monooxygenase from Corynebacterium glutamicum and its application to production of indigo and indirubin. Biotechnology Letters.
18 10.1021/acssynbio.9b00468 doi Yang Gu, Jingbo Ma, Yonglian Zhu & Peng Xu (2020). Refactoring Ehrlich pathway for high-yield 2-phenylethanol production in Yarrowia lipolytica. ACS Synthetic Biology.
19 10.1073/pnas.1404629111 doi S. Frusciante, G. Diretto, M. Bruno, P. Ferrante, M. Pietrella, A. Prado-Cabrero, A. Rubio-Moraga, P. Beyer, L. Gomez-Gomez, S. Al-Babili & G. Giuliano (2014). Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America.
20 10.1186/s12934-019-1166-1 doi Wen Wang, Ping He, Dongdong Zhao, Lijun Ye, Longhai Dai, Xueli Zhang, Yuanxia Sun, Jing Zheng & Changhao Bi (2019). Construction of Escherichia coli cell factories for crocin biosynthesis. Microbial Cell Factories.
21 10.1105/tpc.006536 doi Florence Bouvier, Claude Suire, Jérôme Mutterer & Bilal Camara (2002). Oxidative Remodeling of Chromoplast Carotenoids. Plant Cell.
22 10.1073/pnas.1001962107 doi F. J. Sangari, J. Perez-Gil, L. Carretero-Paulet, J. M. Garcia-Lobo & M. Rodriguez-Concepcion (2010). A new family of enzymes catalyzing the first committed step of the methylerythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis in bacteria. Proceedings of the National Academy of Sciences of the United States of America.
23 10.1007/s00253-020-10359-8 doi Xinyu Zou, Laixian Guo, Lilong Huang, Miao Li, Sheng Zhang, Anren Yang, Yu Zhang, Luying Zhu, Hongxia Zhang, Juan Zhang & Zhibin Feng (2020). Pathway construction and metabolic engineering for fermentative production of β-alanine in Escherichia coli. Applied Microbiology & Biotechnology.
24 10.1073/pnas.77.10.5730 doi M. Katinka, P. Cossart, L. Sibilli, I. Saint-Girons, M. A. Chalvignac, G. Le Bras, G. N. Cohen & M. Yaniv (1980). Nucleotide sequence of the thrA gene of Escherichia coli.. Proceedings of the National Academy of Sciences of the United States of America.
25 10.1016/S0021-9258(17)36051-9 doi Cassan M, Parsot C, Cohen GN & Patte JC (1986). Nucleotide sequence of lysC gene encoding the lysine-sensitive aspartokinase III of Escherichia coli K12. Evolutionary pathway leading to three isofunctional enzymes.. The Journal of biological chemistry.
26 10.1016/S0021-9258(18)32824-2 doi Zakin MM, Duchange N, Ferrara P & Cohen GN (1983). Nucleotide sequence of the metL gene of Escherichia coli. Its product, the bifunctional aspartokinase ii-homoserine dehydrogenase II, and the bifunctional product of the thrA gene, aspartokinase I-homoserine dehydrogenase I, derive from a common ancestor.. The Journal of biological chemistry.
27 10.1007/s00253-011-3208-4 doi Yinxia Li, Norika Kawakami, Henry Joseph Oduor Ogola, Hiroyuki Ashida, Takahiro Ishikawa, Hitoshi Shibata & Yoshihiro Sawa (2011). A novel l-aspartate dehydrogenase from the mesophilic bacterium Pseudomonas aeruginosa PAO1: molecular characterization and application for l-aspartate production. Applied Microbiology & Biotechnology.
28 10.1099/00221287-130-5-1271 doi Guest JR, Roberts RE & Wilde RJ (1984). Cloning of the aspartase gene (aspA) of Escherichia coli. Journal of general microbiology.
29 10.1093/nar/13.6.2063 doi Takagi JS, Ida N, Tokushige M, Sakamoto H & Shimura Y (1985). Cloning and nucleotide sequence of the aspartase gene of Escherichia coli W.. Nucleic acids research.
30 10.1007/s002530051302 doi M. A. G. Koffas, R. Ramamoorthi, W. A. Pine, A. J. Sinskey & G. Stephanopoulos (1998). Sequence of the Corynebacterium glutamicum pyruvate carboxylase gene. Applied Microbiology & Biotechnology.
31 10.1128/AEM.68.11.5422-5428.2002 doi M. A. G. Koffas, G. Y. Jung, J. C. Aon & G. Stephanopoulos (2002). Effect of Pyruvate Carboxylase Overexpression on the Physiology of Corynebacterium glutamicum. Applied and Environmental Microbiology.
32 10.1093/oxfordjournals.jbchem.a134718 doi Nobuyuki FUJITA, Tetsuya MIWA, Sumio ISHIJIMA, Katsura IZUI & Hirohiko KATSUKI (1984). The Primary Structure of Phosphoenolpyruvate Carboxylase of Escherichia coli. Nucleotide Sequence of the ppc Gene and Deduced Amino Acid Sequence1. Journal of Biochemistry.
33 10.1016/0378-1119(84)90140-9 doi Fernando Valle, Baltazar Becerril, Ellson Chen, Peter Seeburg, Herbert Heyneker & Francisco Bolivar (1984). Complete nucleotide sequence of the glutamate dehydrogenase gene from Escherichia coli K-12. Gene.
34 10.1099/00221287-143-1-187 doi P. K. Bunch, F. Mat-Jan, N. Lee & D. P. Clark (1996). The IdhA Gene Encoding the Fermentative Lactate Dehydrogenase of Escherichia Coli. Microbiology (13500872).
35 10.1016/0378-1119(89)90483-6 doi Paige E. Goodlove, Philip R. Cunningham, Jack Parker & David P. Clark (1989). Cloning and sequence analysis of the fermentative alcohol-dehydrogenase-encoding gene of Escherichia coli. Gene.
36 10.1111/j.1742-4658.2010.07617.x doi Campos-Bermudez VA, Bologna FP, Andreo CS & Drincovich MF (2010). Functional dissection of Escherichia coli phosphotransacetylase structural domains and analysis of key compounds involved in activity regulation. The FEBS journal.
37 10.1007/s10529-008-9903-2 doi Ghimire GP, Oh TJ, Lee HC & Sohng JK (2009). Squalene-hopene cyclase (Spterp25) from Streptomyces peucetius: sequence analysis, expression and functional characterization.. Biotechnology letters.
38 10.1128/JB.01939-07 doi Lee S & Poulter CD (2008). Cloning, solubilization, and characterization of squalene synthase from Thermosynechococcus elongatus BP-1.. Journal of bacteriology.
39 10.1021/acscentsci.5b00115 doi Jian-Jung Pan, Jose O. Solbiati, Gurusankar Ramamoorthy, Brandan S. Hillerich, Ronald D. Seidel, John E. Cronan, Steven C. Almo & C. Dale Poulter (2015). Biosynthesis of Squalene from Farnesyl Diphosphate in Bacteria: Three Steps Catalyzed by Three Enzymes. ACS Central Science.
40 10.1074/jbc.M505070200 doi Alexandra Pelz, Karsten-Peter Wieland, Karsten Putzbach, Petra Hentschel, Klaus Albert & Friedrich Götz (2005). Structure and Biosynthesis of Staphyloxanthin fromStaphylococcus aureus. Journal of Biological Chemistry.
41 10.1074/jbc.M112.343020 doi Kim SH & Lee PC (2012). Functional expression and extension of staphylococcal staphyloxanthin biosynthetic pathway in Escherichia coli.. The Journal of biological chemistry.
42 10.1111/febs.13090 doi Kana Ohtake, Naoki Saito, Satoshi Shibuya, Wakako Kobayashi, Ryosuke Amano, Takumi Hirai, Shinji Sasaki, Chiaki Nakano & Tsutomu Hoshino (2014). Biochemical characterization of the water-soluble squalene synthase from Methylococcus capsulatus and the functional analyses of its two DXXD(E)D motifs and the highly conserved aromatic amino acid residues. FEBS Journal.
43 10.1371/journal.pone.0120446 doi Masataka Kajikawa, Seiko Kinohira, Akira Ando, Miki Shimoyama, Misako Kato & Hideya Fukuzawa (2015). Accumulation of Squalene in a Microalga Chlamydomonas reinhardtii by Genetic Modification of Squalene Synthase and Squalene Epoxidase Genes. PLoS ONE.
44 10.1007/BF00902741 doi Kamimura N, Hidaka M, Masaki H & Uozumi T (1994). Construction of squalene-accumulating Saccharomyces cerevisiae mutants by gene disruption through homologous recombination.. Applied microbiology and biotechnology.
45 10.1186/s13068-014-0133-7 doi Claire M Hull, E Joel Loveridge, Nicola J Rolley, Iain S Donnison, Steven L Kelly & Diane E Kelly (2014). Co-production of ethanol and squalene using a Saccharomyces cerevisiae ERG1 (squalene epoxidase) mutant and agro-industrial feedstock. Biotechnology for Biofuels.
46 10.1128/AEM.00277-09 doi K. Tokuhiro, M. Muramatsu, C. Ohto, T. Kawaguchi, S. Obata, N. Muramoto, M. Hirai, H. Takahashi, A. Kondo, E. Sakuradani & S. Shimizu (2009). Overproduction of Geranylgeraniol by Metabolically Engineered Saccharomyces cerevisiae. Applied and Environmental Microbiology.
47 10.1021/acs.jafc.7b02945 doi Paramasivan K & Mutturi S (2017). Regeneration of NADPH Coupled with HMG-CoA Reductase Activity Increases Squalene Synthesis in Saccharomyces cerevisiae.. Journal of agricultural and food chemistry.
48 10.1038/srep03698 doi Zhubo Dai, Beibei Wang, Yi Liu, Mingyu Shi, Dong Wang, Xianan Zhang, Tao Liu, Luqi Huang & Xueli Zhang (2014). Producing aglycons of ginsenosides in bakers' yeast. Scientific Reports.
49 10.1016/j.ces.2016.06.014 doi Aamir Rasool, Muhammad Saad Ahmed & Chun Li (2016). Overproduction of squalene synergistically downregulates ethanol production in Saccharomyces cerevisiae. Chemical Engineering Science.
50 10.1007/s10295-018-2018-4 doi Han JY, Seo SH, Song JM, Lee H & Choi ES (2018). High-level recombinant production of squalene using selected Saccharomyces cerevisiae strains.. Journal of industrial microbiology & biotechnology.
51 10.1002/bit.26595 doi Liu-Jing Wei, Suryang Kwak, Jing-Jing Liu, Stephan Lane, Qiang Hua, Dae-Hyuk Kweon & Yong-Su Jin (2018). Improved squalene production through increasing lipid contents in Saccharomyces cerevisiae. Biotechnology & Bioengineering.
52 10.1128/AEM.03167-13 doi Falk Matthäus, Markus Ketelhot, Michael Gatter & Gerold Barth (2013). Production of Lycopene in the Non-Carotenoid-Producing Yeast Yarrowia lipolytica. Applied and Environmental Microbiology.
53 10.1128/AEM.01402-09 doi Ghimire GP, Lee HC & Sohng JK (2009). Improved squalene production via modulation of the methylerythritol 4-phosphate pathway and heterologous expression of genes from Streptomyces peucetius ATCC 27952 in Escherichia coli.. Applied and environmental microbiology.
54 10.1006/abbi.1997.0502 doi Thompson JF, Danley DE, Mazzalupo S, Milos PM, Lira ME & Harwood HJ Jr (1998). Truncation of human squalene synthase yields active, crystallizable protein.. Archives of biochemistry and biophysics.
55 10.1016/j.febslet.2013.12.003 doi Maiko Furubayashi, Ling Li, Akinori Katabami, Kyoichi Saito & Daisuke Umeno (2013). Construction of carotenoid biosynthetic pathways using squalene synthase. Febs Letters.
56 10.1186/s13068-016-0617-8 doi Sun Young Choi, Hyun Jeong Lee, Jaeyeon Choi, Jiye Kim, Sang Jun Sim, Youngsoon Um, Yunje Kim, Taek Soon Lee, Jay D. Keasling & Han Min Woo (2016). Photosynthetic conversion of CO2 to farnesyl diphosphate-derived phytochemicals (amorpha-4,11-diene and squalene) by engineered cyanobacteria. Biotechnology for Biofuels.
57 10.1038/nbt833 doi Vincent J J Martin, Douglas J Pitera, Sydnor T Withers, Jack D Newman & Jay D Keasling (2003). Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotechnology.
58 10.1006/abbi.2000.1962 doi Per Mercke, Marie Bengtsson, Harro J. Bouwmeester, Maarten A. Posthumus & Peter E. Brodelius (2000). Molecular Cloning, Expression, and Characterization of Amorpha-4,11-diene Synthase, a Key Enzyme of Artemisinin Biosynthesis in Artemisia annua L.. Archives of Biochemistry & Biophysics.
59 10.1007/s10295-016-1745-7 doi Xu W, Chai C, Shao L, Yao J & Wang Y (2016). Metabolic engineering of Rhodopseudomonas palustris for squalene production.. Journal of industrial microbiology & biotechnology.
60 10.1016/j.jbiotec.2018.07.001 doi Huang YY, Jian XX, Lv YB, Nian KQ, Gao Q, Chen J, Wei LJ & Hua Q (2018). Enhanced squalene biosynthesis in Yarrowia lipolytica based on metabolically engineered acetyl-CoA metabolism.. Journal of biotechnology.
61 10.1016/j.ymben.2017.04.004 doi Shuliang Gao, Yangyang Tong, Li Zhu, Mei Ge, Yian Zhang, Daijie Chen, Yu Jiang & Sheng Yang (2017). Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production. Metabolic Engineering.
62 10.1186/1471-2180-12-198 doi Heider SA, Peters-Wendisch P & Wendisch VF (2012). Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum.. BMC microbiology.
63 10.1080/09168451.2019.1693250 doi Zhang X, Wang D, Duan Y, Zheng X, Lin Y & Liang S (2020). Production of lycopene by metabolically engineered <i>Pichia pastoris</i>.. Bioscience, biotechnology, and biochemistry.
64 10.1073/pnas.1808567115 doi Dongsoo Yang, Won Jun Kim, Seung Min Yoo, Jong Hyun Choi, Shin Hee Ha, Mun Hee Lee & Sang Yup Lee (2018). Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria. Proceedings of the National Academy of Sciences of the United States of America.
65 10.1074/jbc.M110357200 doi Funa N, Ohnishi Y, Ebizuka Y & Horinouchi S (2002). Properties and substrate specificity of RppA, a chalcone synthase-related polyketide synthase in Streptomyces griseus.. The Journal of biological chemistry.
66 10.1038/23748 doi Nobutaka Funa, Yasuo Ohnishi, Isao Fujii, Masaaki Shibuya, Yutaka Ebizuka & Sueharu Horinouchi (1999). A new pathway for polyketide synthesis in microorganisms. Nature.
67 10.1111/j.1742-4658.2009.06971.x doi Mizuuchi Y, Shi SP, Wanibuchi K, Kojima A, Morita H, Noguchi H & Abe I (2009). Novel type III polyketide synthases from Aloe arborescens.. The FEBS journal.
68 10.1016/S0014-5793(04)00230-3 pmid Abe I, Utsumi Y, Oguro S & Noguchi H (2004). The first plant type III polyketide synthase that catalyzes formation of aromatic heptaketide.. FEBS letters.
69 18051320 pmid Zhao MW, Liang WQ, Zhang DB, Wang N, Wang CG & Pan YJ (2007). Cloning and characterization of squalene synthase (SQS) gene from Ganoderma lucidum.. Journal of microbiology and biotechnology.
70 10.1016/j.apsb.2016.06.012 doi Huan Zhao, Qi Tang, Changming Mo, Longhua Bai, Dongping Tu & Xiaojun Ma (2017). Cloning and characterization of squalene synthase and cycloartenol synthase from Siraitia grosvenorii. Acta Pharmaceutica Sinica B.
71 10.1093/pcp/pcl032 doi Jung Yeon Han, Yong Soo Kwon, Deok Chun Yang, Young Rim Jung & Yong Eui Choi (2006). Expression and RNA Interference-Induced Silencing of the Dammarenediol Synthase Gene in Panax ginseng. Plant & Cell Physiology.
72 10.1016/j.plaphy.2009.08.001 doi Ok Tae Kim, Jei Wan Lee, Kyong Hwan Bang, Young Chang Kim, Dong Yun Hyun, Seon Woo Cha, Yong Eui Choi, Mei Lan Jin & Baik Hwang (2009). Characterization of a dammarenediol synthase in Centella asiatica (L.) Urban. Plant Physiology & Biochemistry.
73 10.1155/2013/285740 doi Hu W, Liu N, Tian Y & Zhang L (2012). Molecular cloning, expression, purification, and functional characterization of dammarenediol synthase from Panax ginseng.. BioMed research international.
74 10.1007/s11105-008-0087-7 doi Yanlong Liang, Shoujing Zhao & Xin Zhang (2009). Antisense Suppression of Cycloartenol Synthase Results in Elevated Ginsenoside Levels in Panax ginseng Hairy Roots. Plant Molecular Biology Reporter.
75 10.1007/s10529-015-2032-9 doi Dashuai Li, Qiang Zhang, Zhijiang Zhou, Fanglong Zhao & Wenyu Lu (2016). Heterologous biosynthesis of triterpenoid dammarenediol-II in engineered Escherichia coli. Biotechnology Letters.
76 10.1128/JB.188.9.3192-3198.2006 doi Laura L. Grochowski, Huimin Xu & Robert H. White (2006). Methanocaldococcus jannaschii Uses a Modified Mevalonate Pathway for Biosynthesis of Isopentenyl Diphosphate. Journal of Bacteriology.
77 10.1074/jbc.M403693200 doi Supaart Sirikantaramas, Satoshi Morimoto, Yoshinari Shoyama, Yu Ishikawa, Yoshiko Wada, Yukihiro Shoyama & Futoshi Taura (2004). The Gene Controlling Marijuana Psychoactivity. Journal of Biological Chemistry.
78 10.1016/j.chembiol.2012.10.017 doi Guoqing Niu, Lei Li, Junhong Wei & Huarong Tan (2012). Cloning, Heterologous Expression, and Characterization of the Gene Cluster Required for Gougerotin Biosynthesis. Chemistry & Biology.
79 10.1248/bpb.25.661 doi Maruyama T, Saeki D, Ito M & Honda G (2002). Molecular cloning, functional expression and characterization of d-limonene synthase from Agastache rugosa.. Biological & pharmaceutical bulletin.
80 10.1186/s13068-016-0626-7 doi Cao X, Lv YB, Chen J, Imanaka T, Wei LJ & Hua Q (2015). Metabolic engineering of oleaginous yeast Yarrowia lipolytica for limonene overproduction.. Biotechnology for biofuels.
81 10.1007/s12257-018-0497-9 doi Bo-Qian Cheng, Liu-Jing Wei, Yu-Bei Lv, Jun Chen & Qiang Hua (2019). Elevating Limonene Production in Oleaginous Yeast Yarrowia lipolytica via Genetic Engineering of Limonene Biosynthesis Pathway and Optimization of Medium Composition. Biotechnology and Bioprocess Engineering.
82 10.1002/bab.1452 doi Koirala N, Pandey RP, Thuan NH, Ghimire GP, Jung HJ, Oh TJ & Sohng JK (2019). Metabolic engineering of Escherichia coli for the production of isoflavonoid-4'-O-methoxides and their biological activities.. Biotechnology and applied biochemistry.
83 10.1074/jbc.M704939200 doi Waditee R, Bhuiyan NH, Hirata E, Hibino T, Tanaka Y, Shikata M & Takabe T (2007). Metabolic engineering for betaine accumulation in microbes and plants.. The Journal of biological chemistry.
85 10.1074/jbc.M210970200 doi Rungaroon Waditee, Yoshito Tanaka, Kenji Aoki, Takashi Hibino, Hiroshi Jikuya, Jun Takano, Tetsuko Takabe & Teruhiro Takabe (2002). Isolation and Functional Characterization ofN-Methyltransferases That Catalyze Betaine Synthesis from Glycine in a Halotolerant Photosynthetic OrganismAphanothece halophytica. Journal of Biological Chemistry.
86 10.1073/pnas.1711603115 doi Sicong Li, Junhong Guo, Anna Reva, Fanglu Huang, Binbin Xiong, Yuanzhen Liu, Zixin Deng, Peter F. Leadlay & Yuhui Sun (2018). Methyltransferases of gentamicin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America.
87 10.1007/s00253-011-3400-6 doi Rao A, Pimprikar P, Bendigiri C, Kumar AR & Zinjarde S (2011). Cloning and expression of a tyrosinase from Aspergillus oryzae in Yarrowia lipolytica: application in L-DOPA biotransformation.. Applied microbiology and biotechnology.
88 10.1021/acs.jafc.9b07151 doi Yanzhe Shang, Wenping Wei, Ping Zhang & Bang-Ce Ye (2020). Engineering Yarrowia lipolytica for Enhanced Production of Arbutin. Journal of Agricultural & Food Chemistry.
89 10.1021/ja203814d doi Yasumasa Dekishima, Ethan I. Lan, Claire R. Shen, Kwang Myung Cho & James C. Liao (2011). Extending Carbon Chain Length of 1-Butanol Pathway for 1-Hexanol Synthesis from Glucose by EngineeredEscherichia coli. Journal of the American Chemical Society.
90 10.1016/j.ymben.2007.08.003 doi Shota Atsumi, Anthony F. Cann, Michael R. Connor, Claire R. Shen, Kevin M. Smith, Mark P. Brynildsen, Katherine J.Y. Chou, Taizo Hanai & James C. Liao (2008). Metabolic engineering of Escherichia coli for 1-butanol production. Metabolic Engineering.
91 10.1128/jb.178.11.3015-3024.1996 doi Z L Boynton, G N Bennet & F B Rudolph (1995). Cloning, sequencing, and expression of clustered genes encoding beta-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, crotonase, and butyryl-CoA dehydrogenase from Clostridium acetobutylicum ATCC 824.. Journal of Bacteriology.
92 10.1111/j.1432-1033.1995.954_3.x doi Kimberlee K. Wallace, Zhuo-Yao Bao, Hong Dai, Russell Digate, Gregory Schuler, Marilyn K. Speedie & Kevin A. Reynolds (1995). Purification of Crotonyl-CoA Reductase from Streptomyces collinus and Cloning, Sequencing and Expression of the Corresponding Gene in Escherichia coli. European Journal of Biochemistry.
93 10.1126/science.284.5422.1961 doi T. M. Iverson (1999). Structure of the Escherichia coli Fumarate Reductase Respiratory Complex. Science.
94 10.1128/AEM.01160-09 doi Shota Atsumi, Zhen Li & James C. Liao (2009). Acetolactate Synthase from Bacillus subtilis Serves as a 2-Ketoisovalerate Decarboxylase for Isobutanol Biosynthesis in Escherichia coli. Applied and Environmental Microbiology.
95 10.1111/j.1574-6968.2004.tb09778.x doi Marta Plaza, Pilar Fernández de Palencia, Carmen Peláez & Teresa Requena (2004). Biochemical and molecular characterization of α-ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids byLactococcus lactis. FEMS Microbiology Letters.
96 10.1186/s12934-015-0192-x doi Ming-Yue Fang, Chong Zhang, Song Yang, Jin-Yu Cui, Pei-Xia Jiang, Kai Lou, Masaaki Wachi & Xin-Hui Xing (2015). High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway. Microbial Cell Factories.
97 10.1007/s00253-011-3468-z doi Tsutomu Hoshino (2011). Violacein and related tryptophan metabolites produced by Chromobacterium violaceum: biosynthetic mechanism and pathway for construction of violacein core. Applied Microbiology & Biotechnology.
98 10.1007/s00253-013-5504-7 doi Desai SH, Rabinovitch-Deere CA, Tashiro Y & Atsumi S (2014). Isobutanol production from cellobiose in Escherichia coli.. Applied microbiology and biotechnology.
99 10.1186/s12934-016-0535-2 doi Huimin Wang, Yan Yang, Lin, Wenlong Zhou, Minzhi Liu, Kedi Cheng & Wei Wang (2016). Engineering Saccharomyces cerevisiae with the deletion of endogenous glucosidases for the production of flavonoid glucosides. Microbial Cell Factories.
100 10.1038/srep26932 doi Ying Li, Xi Wang, Xizhen Ge & Pingfang Tian (2016). High Production of 3-Hydroxypropionic Acid in Klebsiella pneumoniae by Systematic Optimization of Glycerol Metabolism. Scientific Reports.
101 10.1128/JB.01230-13 doi J. C. VanNice, D. A. Skaff, A. Keightley, J. K. Addo, G. J. Wyckoff & H. M. Miziorko (2013). Identification in Haloferax volcanii of Phosphomevalonate Decarboxylase and Isopentenyl Phosphate Kinase as Catalysts of the Terminal Enzyme Reactions in an Archaeal Alternate Mevalonate Pathway. Journal of Bacteriology.
102 10.1186/s12934-019-1127-8 doi Cong-Cong Jin, Jin-Lai Zhang, Hao Song & Ying-Xiu Cao (2019). Boosting the biosynthesis of betulinic acid and related triterpenoids in Yarrowia lipolytica via multimodular metabolic engineering. Microbial Cell Factories.
103 10.1016/j.jbiotec.2007.08.031 doi Suzanne Verhoef, Harald J. Ruijssenaars, Jan A.M. de Bont & Jan Wery (2007). Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12. Journal of Biotechnology.
104 10.1002/bit.10160 doi Jessica L. Barker & J. W. Frost (2001). Microbial synthesis of p‐hydroxybenzoic acid from glucose. Biotechnology & Bioengineering.
105 10.1007/s00253-015-6733-8 doi Peter Gajdoš, Jean-Marc Nicaud, Tristan Rossignol & Milan Čertík (2015). Single cell oil production on molasses by Yarrowia lipolytica strains overexpressing DGA2 in multicopy. Applied Microbiology & Biotechnology.
106 10.1007/s00253-006-0623-z doi Sang-Hwal Yoon, Ju-Eun Kim, Sook-Hee Lee, Hye-Min Park, Myung-Suk Choi, Jae-Yean Kim, Si-Hyoung Lee, Yong-Chul Shin, Jay D. Keasling & Seon-Won Kim (2006). Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis. Applied Microbiology & Biotechnology.
107 10.1002/bit.20912 doi Sang-Hwal Yoon, Young-Mi Lee, Ju-Eun Kim, Sook-Hee Lee, Joo-Hee Lee, Jae-Yean Kim, Kyung-Hwa Jung, Yong-Chul Shin, Jay D. Keasling & Seon-Won Kim (2005). Enhanced lycopene production inEscherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate. Biotechnology & Bioengineering.
108 10.1042/bj3240421 doi Susumu KAJIWARA, Paul D. FRASER, Keiji KONDO & Norihiko MISAWA (1997). Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Biochemical Journal.
109 10.1110/ps.072755707 doi John L. Andreassi, Patrick W. Bilder, Matthew W. Vetting, Steven L. Roderick & Thomas S. Leyh (2007). Crystal structure of theStreptococcus pneumoniaemevalonate kinase in complex with diphosphomevalonate. Protein Science.
110 10.1002/prot.10118 doi Michael J. Romanowski, Jeffrey B. Bonanno & Stephen K. Burley (2002). Crystal structure of theStreptococcus pneumoniae phosphomevalonate kinase, a member of the GHMP kinase superfamily. Proteins: Structure, Function, and Bioinformatics.
111 10.1007/s00253-018-9472-9 doi Chun-Li Liu, Hao-Ran Bi, Zhonghu Bai, Li-Hai Fan & Tian-Wei Tan (2018). Engineering and manipulation of a mevalonate pathway in Escherichia coli for isoprene production. Applied Microbiology & Biotechnology.
112 10.1111/j.1574-6968.2006.00206.x doi Marcobal A, de las Rivas B & Muñoz R (2006). First genetic characterization of a bacterial beta-phenylethylamine biosynthetic enzyme in Enterococcus faecium RM58.. FEMS microbiology letters.
113 10.1016/j.synbio.2017.10.002 doi Kanchana Rueksomtawin Kildegaard, Belén Adiego-Pérez, David Doménech Belda, Jaspreet Kaur Khangura, Carina Holkenbrink & Irina Borodina (2017). Engineering of Yarrowia lipolytica for production of astaxanthin. Synthetic and Systems Biotechnology.
114 10.1007/s10529-014-1460-2 doi Wang JF, Meng HL, Xiong ZQ, Zhang SL & Wang Y (2014). Identification of novel knockout and up-regulated targets for improving isoprenoid production in E. coli.. Biotechnology letters.
115 10.3389/fbioe.2020.00059 doi Joana L. Rodrigues, Daniela Gomes & Lígia R. Rodrigues (2020). A Combinatorial Approach to Optimize the Production of Curcuminoids From Tyrosine in Escherichia coli. Frontiers in Bioengineering and Biotechnology.
116 10.1128/AEM.00405-15 doi Christian Bille Jendresen, Steen Gustav Stahlhut, Mingji Li, Paula Gaspar, Solvej Siedler, Jochen Förster, Jérôme Maury, Irina Borodina & Alex Toftgaard Nielsen (2015). Highly Active and Specific Tyrosine Ammonia-Lyases from Diverse Origins Enable Enhanced Production of Aromatic Compounds in Bacteria and Saccharomyces cerevisiae. Applied and Environmental Microbiology.
117 10.1021/acssynbio.0c00048 doi Mahsa Babaei, Gheorghe M. Borja Zamfir, Xiao Chen, Hanne Bjerre Christensen, Mette Kristensen, Jens Nielsen & Irina Borodina (2020). Metabolic Engineering of Saccharomyces cerevisiae for Rosmarinic Acid Production. ACS Synthetic Biology.
118 10.1128/JB.187.12.4286-4289.2005 doi Longkuan Xiang & Bradley S. Moore (2005). Biochemical Characterization of a Prokaryotic Phenylalanine Ammonia Lyase. Journal of Bacteriology.
119 10.1046/j.1432-1033.2002.02984.x doi Dagmar Röther, László Poppe, Gaby Morlock, Sandra Viergutz & János Rétey (2003). An active site homology model of phenylalanine ammonia-lyase fromP. crispum. European Journal of Biochemistry.
120 10.1007/s11033-008-9354-9 doi Guo J & Wang MH (2009). Characterization of the phenylalanine ammonia-lyase gene (SlPAL5) from tomato (Solanum lycopersicum L.).. Molecular biology reports.
121 10.1128/JB.188.7.2666-2673.2006 doi Martin Berner, Daniel Krug, Corina Bihlmaier, Andreas Vente, Rolf Müller & Andreas Bechthold (2006). Genes and Enzymes Involved in Caffeic Acid Biosynthesis in the Actinomycete Saccharothrix espanaensis. Journal of Bacteriology.
122 10.1021/acssynbio.9b00431 doi Yuanzi Li, Jiwei Mao, Quanli Liu, Xiaofei Song, Yuzhen Wu, Miao Cai, Haijin Xu & Mingqiang Qiao (2020). De Novo Biosynthesis of Caffeic Acid from Glucose by Engineered Saccharomyces cerevisiae. ACS Synthetic Biology.
123 10.1016/j.febslet.2009.07.029 doi Yohei Katsuyama, Tomoko Kita & Sueharu Horinouchi (2009). Identification and characterization of multiple curcumin synthases from the herb Curcuma longa. Febs Letters.
124 10.1021/acssynbio.0c00304 doi Katja Parschat, Sandra Schreiber, Dirk Wartenberg, Benedikt Engels & Stefan Jennewein (2020). High-Titer De Novo Biosynthesis of the Predominant Human Milk Oligosaccharide 2′-Fucosyllactose from Sucrose in Escherichia coli. ACS Synthetic Biology.
125 10.21161/mjm.69414 doi Ong, K. L., Liew, S. L., Mutalib, S. A., Murad, A. M. A. & Abu Bakar, F. D. (2015). Isolation and cloning of an aryl-aldehyde dehydrogenase gene from the white-rot fungus Pycnoporus cinnabarinus strain MUCL 39533. Malaysian Journal of Microbiology.
126 10.1128/AEM.01412-08 doi Athanasios Beopoulos, Zuzana Mrozova, France Thevenieau, Marie-Thérèse Le Dall, Ivan Hapala, Seraphim Papanikolaou, Thierry Chardot & Jean-Marc Nicaud (2008). Control of Lipid Accumulation in the Yeast Yarrowia lipolytica. Applied and Environmental Microbiology.
127 10.1128/AEM.71.6.2962-2969.2005 doi Hanxiao Jiang, Karl V. Wood & John A. Morgan (2005). Metabolic Engineering of the Phenylpropanoid Pathway in Saccharomyces cerevisiae. Applied and Environmental Microbiology.
128 10.1016/j.ymben.2016.07.011 doi Charles D. Rutter & Christopher V. Rao (2016). Production of 1-decanol by metabolically engineered Yarrowia lipolytica. Metabolic Engineering.
129 10.1021/bi2008646 doi Robert M. Willis, Bradley D. Wahlen, Lance C. Seefeldt & Brett M. Barney (2011). Characterization of a Fatty Acyl-CoA Reductase from Marinobacter aquaeolei VT8: A Bacterial Enzyme Catalyzing the Reduction of Fatty Acyl-CoA to Fatty Alcohol. Biochemistry (00062979).
130 10.1038/npjsba.2016.5 doi Eduard J Kerkhoven, Kyle R Pomraning, Scott E Baker & Jens Nielsen (2016). Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica. npj Systems Biology and Applications.
131 10.1002/bit.22918 doi Zhi‐Gang Qian, Xiao‐Xia Xia & Sang Yup Lee (2010). Metabolic engineering of Escherichia coli for the production of cadaverine: A five carbon diamine. Biotechnology & Bioengineering.
132 10.1007/BF00131766 doi Sang Yup Lee & Ho Nam Chang (1993). High cell density cultivation of Escherichia coli W using sucrose as a carbon source. Biotechnology Techniques.
133 10.1007/s00253-013-5026-3 doi Jian Wang, Li-Kun Cheng, Jing Wang, Qian Liu, Tong Shen & Ning Chen (2013). Genetic engineering of Escherichia coli to enhance production of l-tryptophan. Applied Microbiology and Biotechnology.
134 10.1155/2012/605219 doi Tong Shen, Qing Liu, Xixian Xie, Qingyang Xu & Ning Chen (2012). Improved Production of Tryptophan in Genetically Engineered Escherichia coli with TktA and PpsA Overexpression. BioMed Research International.
135 10.1007/s10295-018-2020-x doi Yuanye Chen, Yongfei Liu, Dongqin Ding, Lina Cong & Dawei Zhang (2018). Rational design and analysis of an Escherichia coli strain for high-efficiency tryptophan production. Journal of Industrial Microbiology and Biotechnology.
136 10.1016/j.synbio.2020.06.009 doi Zhu Li, Dongqin Ding, Huiying Wang, Linxia Liu, Huan Fang, Tao Chen & Dawei Zhang (2020). Engineering Escherichia coli to improve tryptophan production via genetic manipulation of precursor and cofactor pathways. Synthetic and Systems Biotechnology.
137 10.1007/s12010-010-9123-9 doi Huimin Liu, Junhua Kang, Qingsheng Qi & Guanjun Chen (2010). Production of Lactate in Escherichia coli by Redox Regulation Genetically and Physiologically. Applied Biochemistry and Biotechnology.
138 10.1007/s00253-006-0792-9 doi Tina Lütke-Eversloh & Gregory Stephanopoulos (2007). L-Tyrosine production by deregulated strains of Escherichia coli. Applied Microbiology and Biotechnology.
139 10.1128/jb.119.3.736-747.1974 doi Frederick C. Neidhardt, Philip L. Bloch & David F. Smith (1974). Culture medium for enterobacteria.. Journal of Bacteriology.
140 10.1007/s12010-015-1874-x doi Zhou, L., Deng, C., Cui, WJ., Liu, ZM., Zhou, ZM. (2016). Efficient L-Alanine Production by a Thermo-Regulated Switch in Escherichia coli . Appl Biochem Biotechnol.
141 10.1128/jb.169.3.949-954.1987 doi T Conway, Y A Osman, J I Konnan, E M Hoffmann & L O Ingram (1987). Promoter and nucleotide sequences of the Zymomonas mobilis pyruvate decarboxylase.. Journal of Bacteriology.
142 10.1038/msb4100050 doi Tomoya Baba, Takeshi Ara, Miki Hasegawa, Yuki Takai, Yoshiko Okumura, Miki Baba, Kirill A Datsenko, Masaru Tomita, Barry L Wanner & Hirotada Mori (2006). Construction of Escherichia coli K‐12 in‐frame, single‐gene knockout mutants: the Keio collection. Molecular Systems Biology.
143 10.1016/j.proche.2015.12.098 doi Fithriani, Prayoga Suryadarma & Djumali Mangunwidjaja (2015). Metabolic Engineering of Escherichia coli Cells for Ethanol Production under Aerobic Conditions. Procedia Chemistry.
144 10.1002/bit.25844 doi Hemanshu Mundhada, Konstantin Schneider, Hanne Bjerre Christensen & Alex Toftgaard Nielsen (2015). Engineering of high yield production of L‐serine in Escherichia coli. Biotechnology & Bioengineering.
145 10.1007/s10295-014-1476-6 doi Pengfei Gu, Fan Yang, Tianyuan Su, Fangfang Li, Yikui Li & Qingsheng Qi (2014). Construction of an l-serine producing Escherichia coli via metabolic engineering. Journal of Industrial Microbiology & Biotechnology.
146 10.1371/journal.pone.0158200 doi Lina Liu, Xuguo Duan & Jing Wu (2016). L-Tryptophan Production in Escherichia coli Improved by Weakening the Pta-AckA Pathway. PLOS ONE.
147 10.1007/s10295-011-0978-8 doi Zhi-Jun Zhao, Chun Zou, Yi-Xing Zhu, Jun Dai, Sheng Chen, Dan Wu, Jing Wu & Jian Chen (2011). Development of l-tryptophan production strains by defined genetic modification in Escherichia coli. Journal of Industrial Microbiology & Biotechnology.
148 10.1002/bit.27665 doi Bo Xiong, Yongduo Zhu, Daoguang Tian, Shuai Jiang, Xiaoguang Fan, Qian Ma, Heyun Wu & Xixian Xie (2021). Flux redistribution of central carbon metabolism for efficient production of l-tryptophan in Escherichia coli. Biotechnology and bioengineering.
149 10.1007/s00253-016-7772-5 doi Lin Chen & An-Ping Zeng (2016). Rational design and metabolic analysis of Escherichia coli for effective production of L-tryptophan at high concentration. Applied Microbiology and Biotechnology.
150 10.1073/pnas.100127597 doi Daiguan Yu, Hilary M. Ellis, E-Chiang Lee, Nancy A. Jenkins, Neal G. Copeland & Donald L. Court (2000). An efficient recombination system for chromosome engineering in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America.
151 10.1186/1475-2859-8-19 doi Víctor E Balderas-Hernández, Andrea Sabido-Ramos, Patricia Silva, Natividad Cabrera-Valladares, Georgina Hernández-Chávez, José L Báez-Viveros, Alfredo Martínez, Francisco Bolívar & Guillermo Gosset (2009). Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli. Microbial Cell Factories.
152 10.1007/s10295-018-2106-5 doi Hao Niu, Ruirui Li, Quanfeng Liang, Qingsheng Qi, Qiang Li & Pengfei Gu (2018). Metabolic engineering for improving l-tryptophan production in Escherichia coli. Journal of Industrial Microbiology & Biotechnology.
153 10.1016/j.biortech.2012.02.088 doi Qian Liu, Yongsong Cheng, Xixian Xie, Qingyang Xu & Ning Chen (2012). Modification of tryptophan transport system and its impact on production of l-tryptophan in Escherichia coli. Bioresource Technology.
154 10.1007/s11274-012-1243-7 doi Li-Kun Cheng, Jian Wang, Qing-Yang Xu, Chun-Guang Zhao, Zhi-Qiang Shen, Xi-Xian Xie & Ning Chen (2013). Strategy for pH control and pH feedback-controlled substrate feeding for high-level production of L-tryptophan by Escherichia coli . World J Microbiol Biotechnol.
155 10.1128/AEM.00115-10 doi Hyung Seok Choi, Sang Yup Lee, Tae Yong Kim & Han Min Woo (2010). In Silico Identification of Gene Amplification Targets for Improvement of Lycopene Production▿ †. Applied and Environmental Microbiology.
156 10.1002/bit.26398 doi Keju Jing, Yuanwei Tang, Chuanyi Yao, Ehecatl A. del Rio‐Chanona, Xueping Ling & Dongda Zhang (2017). Overproduction of L‐tryptophan via simultaneous feed of glucose and anthranilic acid from recombinant Escherichia coli W3110: Kinetic modeling and process scale‐up. Biotechnology & Bioengineering.
157 10.1007/s13213-012-0579-4 doi Wang, J., Huang, J., Shi, J. et al. Fermentation characterization of an L-tryptophan producing Escherichia coli strain with inactivated phosphotransacetylase. Ann Microbiol 63, 1219–1224 (2013).
158 10.1080/21655979.2019.1700092 doi Da Xu, Zhen Zhang, Ziqiang Liu & Qingyang Xu (2019). Using enzymatic hydrolyzate as new nitrogen source for L-tryptophan fermentation by E.coli. Bioengineered.
159 10.1371/journal.pone.0179240 doi Qingyang Xu, Fang Bai, Ning Chen & Gang Bai (2017). Gene modification of the acetate biosynthesis pathway in Escherichia coli and implementation of the cell recycling technology to increase L-tryptophan production. PLOS ONE.
160 10.3389/fbioe.2020.00300 doi Hai-Yan Zhou, Wang-Jie Wu, Yue-Ying Xu, Bin Zhou, Kun Niu, Zhi-Qiang Liu & Yu-Guo Zheng (2020). Calcium Carbonate Addition Improves L-Methionine Biosynthesis by Metabolically Engineered Escherichia coli W3110-BL. Frontiers in Bioengineering and Biotechnology.
161 10.1002/btpr.2944 doi Zhao C, Fang H, Wang J, Zhang S, Zhao X, Li Z, Lin C, Shen Z, Cheng L. Application of fermentation process control to increase l-tryptophan production in Escherichia coli. Biotechnol Prog. 2020 Mar;36(2):e2944. doi: 10.1002/btpr.2944. Epub 2019 Dec 12. PMID: 31804750.
162 10.1186/1475-2859-11-30 doi Pengfei Gu, Fan Yang, Junhua Kang, Qian Wang & Qingsheng Qi (2012). One-step of tryptophan attenuator inactivation and promoter swapping to improve the production of L-tryptophan in Escherichia coli. Microbial Cell Factories.
163 10.1007/s13213-015-1103-4 doi Chunguang Zhao, LiKun Cheng, Jian Wang, Zhiqiang Shen & Ning Chen (2015). Impact of deletion of the genes encoding acetate kinase on production of L-tryptophan by Escherichia coli. Annals of Microbiology.
164 10.1016/j.jmb.2009.09.022 doi Patrick Daegelen, F. William Studier, Richard E. Lenski, Susan Cure & Jihyun F. Kim (2009). Tracing Ancestors and Relatives of Escherichia coli B, and the Derivation of B Strains REL606 and BL21(DE3). Journal of Molecular Biology.
165 10.1016/j.ymben.2018.05.001 doi Lin Chen, Minliang Chen, Chengwei Ma & An-Ping Zeng (2018). Discovery of feed-forward regulation in L-tryptophan biosynthesis and its use in metabolic engineering of E. coli for efficient tryptophan bioproduction. Metabolic Engineering.
166 10.1111/pbi.12124 doi Jules Beekwilder, Adèle van Houwelingen, Katarina Cankar, Aalt D.J. van Dijk, René M. de Jong, Geert Stoopen, Harro Bouwmeester, Jihane Achkar, Theo Sonke & Dirk Bosch (2013). Valencene synthase from the heartwood of Nootka cypress (Callitropsis nootkatensis) for biotechnological production of valencene. Plant Biotechnology Journal.
167 10.1186/s12934-020-1295-6 doi Meng, X., Liu, H., Xu, W. et al. Metabolic engineering Saccharomyces cerevisiae for de novo production of the sesquiterpenoid (+)-nootkatone. Microb Cell Fact 19, 21 (2020).
168 10.1080/21655979.2019.1592417 doi Lihong Du, Zhen Zhang, Qingyang Xu & Ning Chen (2019). Central metabolic pathway modification to improve L-tryptophan production in Escherichia coli. Bioengineered.
169 10.1128/aem.43.2.289-297.1982 doi S Aiba, H Tsunekawa & T Imanaka (1982). New approach to tryptophan production by Escherichia coli: genetic manipulation of composite plasmids in vitro.. Applied and Environmental Microbiology.
170 10.1080/13102818.2019.1674692 doi Du, L., Zhang, Z., Xu, Q., & Chen, N. (2019). New strategy for removing acetic acid as a by-product during L-tryptophan production. Biotechnology & Biotechnological Equipment, 33(1), 1471–1480.
171 10.1007/s00253-013-4988-5 doi Pengfei Gu, Fan Yang, Fangfang Li, Quanfeng Liang & Qingsheng Qi (2013). Knocking out analysis of tryptophan permeases in Escherichia coli for improving L-tryptophan production. Applied Microbiology and Biotechnology.
172 10.1002/bit.28019 doi Guo, L., Ding, S., Liu, Y., Gao, C., Hu, G., Song, W., Liu, J., Chen, X., & Liu, L. (2022). Enhancing tryptophan production by balancing precursors in Escherichia coli. Biotechnology and Bioengineering, 119, 983–993.
173 10.1016/j.jbiotec.2019.10.009 doi Julia Tröndle, Kristin Schoppel, Arne Bleidt, Natalia Trachtmann, Georg A. Sprenger, Dirk Weuster-Botz (2020). Metabolic control analysis of L-tryptophan production with Escherichia coli based on data from short-term perturbation experiments. Journal of Biotechnology, 307, 15-28.
174 10.1002/jctb.698 doi Dodge, T.C. and Gerstner, J.M. (2002), Optimization of the glucose feed rate profile for the production of tryptophan from recombinant E coli. J. Chem. Technol. Biotechnol., 77: 1238-1245.
175 10.1007/s10295-017-1959-3 doi Lina Liu, Sheng Chen, Jing Wu, Phosphoenolpyruvate:glucose phosphotransferase system modification increases the conversion rate during l-tryptophan production in Escherichia coli, Journal of Industrial Microbiology and Biotechnology, Volume 44, Issue 10, 1 October 2017, Pages 1385–1395.
176 10.1016/j.jbiotec.2016.06.008 doi Lina Liu, Xuguo Duan and Jing Wu (2016). Modulating the direction of carbon flow in Escherichia coli to improve l-tryptophan production by inactivating the global regulator FruR. Journal of Biotechnology. 231, 141-148.
177 10.1002/bit.260240619 doi C. P. Dwivedi, T. Imanaka & S. Aiba (2004). Instability of plasmid‐harboring strain of E. coli in continuous culture. Biotechnology & Bioengineering.
178 10.13995/j.cnki.11-1802/ts.022033 doi ZHANG Zhen, XIONG Haibo, XU Qingyang. L-tryptophan fermentation by high cell density culture of Escherichia coli[J]. Food and Fermentation Industries, 2019, 45(23): 15-20
179 10.1007/s10068-013-0029-5 doi Luo, W., Huang, J., Zhu, X., Huan, L., Cai, J. and Xu, Z. (2013). Enhanced production of l-tryptophan with glucose feeding and surfactant addition and related metabolic flux redistribution in the recombinant Escherichia coli . Food Sci Biotechnol 22, 207–214
180 10.1007/978-3-642-37916-1_25 doi Cheng, L., Xu, Q., Liang, J., Xie, X., Zhang, C., Chen, N. (2014). Control Strategy of Specific Growth Rate in L-Tryptophan Production by Escherichia coli . In: Zhang, TC., Ouyang, P., Kaplan, S., Skarnes, B. (eds) Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012). Lecture Notes in Electrical Engineering, vol 249. Springer, Berlin, Heidelberg.
181 10.1007/s13213-017-1289-8 doi Lu, N., Zhang, B., Cheng, L., Wang, J., Zhang, S., Fu, S., Xiao, Y. and Liu, H. (2017). Gene modification of Escherichia coli and incorporation of process control to decrease acetate accumulation and increase ʟ-tryptophan production. Ann Microbiol 67, 567–576 .
182 10.1016/j.biortech.2023.129475 doi Mi Tang, Xuewei Pan, Tianjin Yang, Jiajia You, Rongshuai Zhu, Taowei Yang, Xian Zhang, Meijuan Xu, Zhiming Rao (2023). Multidimensional engineering of Escherichia coli for efficient synthesis of L-tryptophan. Bioresource Technology. 386.
183 10.3390/ijms241411866 doi Liu S, Wang BB, Xu JZ, Zhang WG. Engineering of Shikimate Pathway and Terminal Branch for Efficient Production of L-Tryptophan in Escherichia coli. Int J Mol Sci. 2023 Jul 24;24(14):11866.
184 10.1186/s12934-022-01930-1 doi Kristin Schoppel, Natalia Trachtmann, Emil J. Korzin, Angelina Tzanavari, Georg A. Sprenger & Dirk Weuster-Botz (2022). Metabolic control analysis enables rational improvement of E. colil-tryptophan producers but methylglyoxal formation limits glycerol-based production. Microbial Cell Factories.
185 10.1073/pnas.0308171100 doi T. B. Causey, K. T. Shanmugam, L. P. Yomano & L. O. Ingram (2004). Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proceedings of the National Academy of Sciences of the United States of America.
186 10.1128/AEM.71.12.7880-7887.2005 doi Sang Jun Lee, Dong-Yup Lee, Tae Yong Kim, Byung Hun Kim, Jinwon Lee & Sang Yup Lee (2005). Metabolic Engineering of Escherichia coli for Enhanced Production of Succinic Acid, Based on Genome Comparison and In Silico Gene Knockout Simulation. Applied and Environmental Microbiology.
187 10.1126/science.1126439 doi György Pósfai, Guy Plunkett, Tamás Fehér, David Frisch, Günther M. Keil, Kinga Umenhoffer, Vitaliy Kolisnychenko, Buffy Stahl, Shamik S. Sharma, Monika de Arruda, Valerie Burland, Sarah W. Harcum & Frederick R. Blattner (2006). Emergent Properties of Reduced-Genome Escherichia coli. Science.
188 10.1186/1475-2859-8-2 doi Jun Hyoung Lee, Bong Hyun Sung, Mi Sun Kim, Frederick R Blattner, Byoung Hoon Yoon, Jung Hoe Kim & Sun Chang Kim (2009). Metabolic engineering of a reduced-genome strain of Escherichia coli for L-threonine production. Microbial Cell Factories.
189 10.1016/S0923-2508(03)00036-6 doi Vitaliy A. Livshits, Natalia P. Zakataeva, Vladimir V. Aleshin & Maria V. Vitushkina (2003). Identification and characterization of the new gene rhtA involved in threonine and homoserine efflux in Escherichia coli. Research in Microbiology.
190 10.1038/msb4100196 doi Kwang Ho Lee, Jin Hwan Park, Tae Yong Kim, Hyun Uk Kim & Sang Yup Lee (2007). Systems metabolic engineering of Escherichia coli for L‐threonine production. Molecular Systems Biology.
191 10.1016/j.bej.2019.05.002 doi Kim-Ngan Thi Tran, Gyeong Tae Eom and Soon Ho Hong (2019). Improving L-serine production in Escherichia coli via synthetic protein scaffold of SerB, SerC, and EamA. Biochemical Engineering Journal. 148, 138-142.
192 10.1016/j.ymben.2016.11.008 doi Hemanshu Mundhada, Jose M. Seoane, Konstantin Schneider, Anna Koza, Hanne B. Christensen, Tobias Klein, Patrick V. Phaneuf, Markus Herrgard, Adam M. Feist & Alex T. Nielsen (2016). Increased production of L-serine in Escherichia coli through Adaptive Laboratory Evolution. Metabolic Engineering.
193 10.1007/s12257-017-0084-5 doi Zhang, Y.; Kang, P.; Liu, S.; Zhao, Y.; Wang, Z.; Chen, T. (2017). GlyA Gene Knock-out in Escherichia coli Enhances L-Serine Production without Glycine Addition. Biotechnol. Bioprocess Eng. 22, 390–396.
194 10.1186/s12934-020-01323-2 doi Wang, C., Wu, J., Shi, B. et al. Improving l-serine formation by Escherichia coli by reduced uptake of produced l-serine. Microb Cell Fact 19, 66 (2020).
195 10.1002/biot.201100061 doi Chandresh Thakker, Irene Martínez, Ka‐Yiu San & George N. Bennett (2011). Succinate production in Escherichia coli. Biotechnology Journal.
196 10.1007/s13213-015-1172-4 doi Zhao, C., Cheng, L., Xu, Q. et al. Improvement of the production of L-tryptophan in Escherichia coli by application of a dissolved oxygen stage control strategy. Ann Microbiol 66, 843–854
197 10.1002/bit.26797 doi Byoungjin Kim, Robert Binkley, Hyun Uk Kim & Sang Yup Lee (2018). Metabolic engineering of Escherichia coli for the enhanced production of l‐tyrosine. Biotechnology & Bioengineering.
198 10.1016/j.ymben.2009.01.005 doi Wenjuan Zha, Sheryl B. Rubin-Pitel, Zengyi Shao & Huimin Zhao (2009). Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metabolic Engineering.
199 10.1007/s00253-005-1916-3 doi Ikuo Miyahisa, Masafumi Kaneko, Nobutaka Funa, Hisashi Kawasaki, Hiroyuki Kojima, Yasuo Ohnishi & Sueharu Horinouchi (2005). Efficient production of (2S)-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster. Applied Microbiology and Biotechnology.
200 10.1002/bit.22502 doi Zhi‐Gang Qian, Xiao‐Xia Xia & Sang Yup Lee (2009). Metabolic engineering of Escherichia coli for the production of putrescine: A four carbon diamine. Biotechnology & Bioengineering.
201 10.1007/s00253-007-1307-z doi N. Yakandawala, T. Romeo, A. D. Friesen & S. Madhyastha (2007). Metabolic engineering of Escherichia coli to enhance phenylalanine production. Applied Microbiology and Biotechnology.
202 10.1016/j.ymben.2018.09.001 doi Heyun Wu, Yanjun Li, Qian Ma, Qiang Li, Zifan Jia, Bo Yang, Qingyang Xu, Xiaoguang Fan, Chenglin Zhang, Ning Chen & Xixian Xie (2018). Metabolic engineering of Escherichia coli for high-yield uridine production. Metabolic Engineering.
203 10.1021/acssynbio.0c00163 doi Heyun Wu, Daoguang Tian, Xiaoguang Fan, Weiming Fan, Yue Zhang, Shuai Jiang, Chenhui Wen, Qian Ma, Ning Chen & Xixian Xie (2020). Highly Efficient Production of l‑Histidine from Glucose by Metabolically Engineered Escherichia coli. ACS Synthetic Biology.
204 10.1002/bit.26198 doi Jian‐Feng Huang, Zhi‐Qiang Liu, Li‐Qun Jin, Xiao‐Ling Tang, Zhen‐Yang Shen, Huan‐Huan Yin & Yu‐Guo Zheng (2016). Metabolic engineering of Escherichia coli for microbial production of L‐methionine. Biotechnology & Bioengineering.
205 10.1016/j.ymben.2019.07.011 doi Jian Wang, Ruihua Zhang, Yan Zhang, Yaping Yang, Yuheng Lin & Yajun Yan (2019). Developing a pyruvate-driven metabolic scenario for growth-coupled microbial production. Metabolic Engineering.
206 10.1186/s12934-020-01369-2 doi Zhu J, Yang W, Wang B, Liu Q, Zhong X, Gao Q, Liu J, Huang J, Lin B, Tao Y. Metabolic engineering of Escherichia coli for efficient production of L-alanyl-L-glutamine. Microb Cell Fact. 2020 Jun 11;19(1):129.
207 10.1186/s12934-015-0211-y doi Mireille Ginesy, Jaroslav Belotserkovsky, Josefine Enman, Leif Isaksson & Ulrika Rova (2015). Metabolic engineering of Escherichia coli for enhanced arginine biosynthesis. Microbial Cell Factories.
208 10.1007/s00253-007-1170-y doi Xueli Zhang, Kaemwich Jantama, J. C. Moore, K. T. Shanmugam & L. O. Ingram (2007). Production of l-alanine by metabolically engineered Escherichia coli. Applied Microbiology and Biotechnology.
209 10.1002/biot.201700695 doi Han Liu, Guochen Fang, Hui Wu, Zhimin Li & Qin Ye (2018). L‐Cysteine Production in Escherichia coli Based on Rational Metabolic Engineering and Modular Strategy. Biotechnology Journal.
210 10.1002/bit.24868 doi Chan Woo Song, Dong In Kim, Sol Choi, Jae Won Jang & Sang Yup Lee (2013). Metabolic engineering of Escherichia coli for the production of fumaric acid. Biotechnology & Bioengineering.
211 10.1128/aem.65.4.1384-1389.1999 doi Dong-Eun Chang, Heung-Chae Jung, Joon-Shick Rhee & Jae-Gu Pan (1999). Homofermentative Production of d- orl-Lactate in Metabolically Engineered Escherichia coli RR1. Applied and Environmental Microbiology.
212 10.1126/sciadv.aba2383 doi Long M, Xu M, Ma Z, Pan X, You J, Hu M, Shao Y, Yang T, Zhang X, Rao Z. Significantly enhancing production of trans-4-hydroxy-l-proline by integrated system engineering in Escherichia coli. Sci Adv. 2020 May 22;6(21):eaba2383.
213 10.1186/s12934-019-1177-y doi Shasha Zhang, Wei Yang, Hao Chen, Bo Liu, Baixue Lin & Yong Tao (2019). Metabolic engineering for efficient supply of acetyl-CoA from different carbon sources in Escherichia coli. Microbial Cell Factories.
214 10.1016/j.ymben.2018.02.008 doi Yu Deng, Ning Ma, Kangjia Zhu, Yin Mao, Xuetuan Wei & Yunying Zhao (2018). Balancing the carbon flux distributions between the TCA cycle and glyoxylate shunt to produce glycolate at high yield and titer in Escherichia coli. Metabolic Engineering.
215 10.1002/bit.21694 doi Kaemwich Jantama, M.J. Haupt, Spyros A. Svoronos, Xueli Zhang, J.C. Moore, K.T. Shanmugam & L.O. Ingram (2007). Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnology & Bioengineering.
216 10.1016/j.bej.2008.01.001 doi Soo Yun Moon, Soon Ho Hong, Tae Yong Kim & Sang Yup Lee (2008). Metabolic engineering of Escherichia coli for the production of malic acid. Biochemical Engineering Journal.
217 10.1002/bit.26190 doi Xiaoxiang Dong, Xiulai Chen, Yuanyuan Qian, Yuancai Wang, Li Wang, Weihua Qiao & Liming Liu (2016). Metabolic engineering of Escherichia coli W3110 to produce L‐malate. Biotechnology & Bioengineering.
218 10.1016/j.biortech.2014.05.035 doi Xianzhong Chen, Mingming Li, Li Zhou, Wei Shen, Govender Algasan, You Fan & Zhengxiang Wang (2014). Metabolic engineering of Escherichia coli for improving shikimate synthesis from glucose. Bioresource Technology.
219 10.1128/aem.63.7.2695-2701.1997 doi L Stols & M I Donnelly (1997). Production of succinic acid through overexpression of NAD(+)-dependent malic enzyme in an Escherichia coli mutant. Applied and Environmental Microbiology.
220 10.1016/j.ymben.2005.02.001 doi Ming-De Deng, David K. Severson, Alan D. Grund, Sarah L. Wassink, Richard P. Burlingame, Alan Berry, Jeffrey A. Running, Candice A. Kunesh, Linsheng Song, Thomas A. Jerrell & Reinhardt A. Rosson (2005). Metabolic engineering of Escherichia coli for industrial production of glucosamine and N-acetylglucosamine. Metabolic Engineering.
221 10.1128/aem.00976-22 doi Li Zhou, Ying Zhu, Zhongzhe Yuan, Guangqing Liu, Zijin Sun, Shiyu Du, He Liu, Yating Li, Haili Liu, and Zhemin Zhou (2022). Evaluation of Metabolic Engineering Strategies on 2-Ketoisovalerate Production by Escherichia coli. Applied and Environmental Microbiology. 88(17): e00976-22.
222 10.1128/aem.63.8.3205-3210.1997 doi W R Farmer & J C Liao (1997). Reduction of aerobic acetate production by Escherichia coli. Applied and Environmental Microbiology.
223 10.1016/j.ymben.2019.04.012 doi Xiaoyu Piao, Lei Wang, Baixue Lin, Hao Chen, Weifeng Liu & Yong Tao (2019). Metabolic engineering of Escherichia coli for production of L-aspartate and its derivative β-alanine with high stoichiometric yield. Metabolic Engineering.
224 10.1007/s10529-006-0032-5 doi S. Zhou, K. T. Shanmugam, L. P. Yomano, T. B. Grabar & L. O. Ingram (2006). Fermentation of 12% (w/v) Glucose to 1.2 m Lactate by Escherichia coli Strain SZ194 using Mineral Salts Medium. Biotechnology Techniques.
225 10.1016/j.bej.2015.08.008 doi Yu Deng, Yin Mao & Xiaojuan Zhang (2015). Metabolic engineering of E. coli for efficient production of glycolic acid from glucose. Biochemical Engineering Journal.
226 10.1186/s13568-017-0389-y doi Gen Nonaka & Kazuhiro Takumi (2017). Cysteine degradation gene yhaM, encoding cysteine desulfidase, serves as a genetic engineering target to improve cysteine production in Escherichia coli. AMB Express.
227 10.1021/acs.jafc.9b06330 doi Han Liu, Yehua Hou, Yu Wang & Zhimin Li (2019). Enhancement of Sulfur Conversion Rate in the Production of l‑Cysteine by Engineered Escherichia coli. Journal of Agricultural & Food Chemistry.
228 10.1021/sb300071a doi Jin Hwan Park, Jae Eun Oh, Kwang Ho Lee, Ji Young Kim & Sang Yup Lee (2012). Rational Design of Escherichia coli for l‑Isoleucine Production. ACS Synthetic Biology.
229 10.1002/bit.20159 doi José Luis Báez‐Viveros, Joel Osuna, Georgina Hernández‐Chávez, Xavier Soberón, Francisco Bolívar & Guillermo Gosset (2004). Metabolic engineering and protein directed evolution increase the yield of L‐phenylalanine synthesized from glucose in Escherichia coli. Biotechnology & Bioengineering.
230 10.1073/pnas.0702609104 doi Jin Hwan Park, Kwang Ho Lee, Tae Yong Kim & Sang Yup Lee (2007). Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation. Proceedings of the National Academy of Sciences of the United States of America.
231 10.1128/AEM.00487-21 doi W. Chris Moxley & Mark A. Eiteman (2021). Pyruvate Production by Escherichia coli by Use of Pyruvate Dehydrogenase Variants. Applied and Environmental Microbiology.
232 10.1002/bit.22548 doi Yu Kyung Jung, Tae Yong Kim, Si Jae Park & Sang Yup Lee (2009). Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnology & Bioengineering.
233 10.1016/j.ymben.2024.06.006 doi Fuqiang Song, Zhijie Qin, Kun Qiu, Zhongshi Huang, Lian Wang, Heng Zhang, Xiaoyu Shan, Hao Meng, Xirong Liu & Jingwen Zhou (2024). Development of a vitamin B5 hyperproducer in Escherichia coli by multiple metabolic engineering. Metabolic Engineering.
234 10.1016/j.ymben.2016.05.008 doi Björn-Johannes Harder, Katja Bettenbrock & Steffen Klamt (2016). Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli. Metabolic Engineering.
235 10.1002/bit.27450 doi Xianghao Wu, D. Brisbane Tovilla‐Coutiño & Mark A. Eiteman (2020). Engineered citrate synthase improves citramalic acid generation in Escherichia coli. Biotechnology & Bioengineering.
236 10.1186/s12934-014-0136-x doi Balderas-Hernández, V.E., Treviño-Quintanilla, L.G., Hernández-Chávez, G. et al. Catechol biosynthesis from glucose in Escherichia coli anthranilate-overproducer strains by heterologous expression of anthranilate 1,2-dioxygenase from Pseudomonas aeruginosa PAO1. Microb Cell Fact 13, 136 (2014). https://doi.org/10.1186/s12934-014-0136-x
237 10.1007/s00253-022-12109-4 doi Wang, HD., Xu, JZ. & Zhang, WG. Metabolic engineering of Escherichia coli for efficient production of l-arginine. Appl Microbiol Biotechnol 106, 5603–5613 (2022).
238 10.1016/j.ymben.2022.07.001 doi Vo, Toan Minh & Park, Sunghoon. Metabolic engineering of Escherichia coli W3110 for efficient production of homoserine from glucose. Metabolic Engineering. 2022, 73, 104-113.
239 10.1186/s13068-023-02359-3 doi Pu, W., Chen, J., Zhou, Y. et al. Systems metabolic engineering of Escherichia coli for hyper-production of 5‑aminolevulinic acid. Biotechnol Biofuels 16, 31 (2023).
240 10.1186/s12934-020-01422-0 doi Jiang, Youming; Zheng, Tianwen; Ye, Xiaohan; Xin, Fengxue; Zhang, Wenming; Dong, Weiliang; Ma, Jiangfeng & Jiang, Min. Metabolic engineering of Escherichia coli for l-malate production anaerobically. Microbial Cell Factories. 2020, 19(1).
241 10.1186/1475-2859-12-56 doi Arense, Paula; Bernal, Vicente; Charlier, Daniël; Iborra, José Luis; Foulquié-Moreno, Maria Remedios & Cánovas, Manuel. Metabolic engineering for high yielding L(-)-carnitine production in Escherichia coli. Microbial Cell Factories. 2013, 12(1).
242 10.1186/s12934-019-1122-0 doi Fordjour, Eric; Adipah, Frederick Komla; Zhou, Shenghu; Du, Guocheng & Zhou, Jingwen. Metabolic engineering of Escherichia coli BL21 (DE3) for de novo production of l-DOPA from d-glucose. Microbial Cell Factories. 2019, 18(1).
243 10.1023/B:BILE.0000044449.08268.7d doi Kazuhiko Tabata & Shin-Ichi Hashimoto (2004). Production of mevalonate by a metabolically-engineered Escherichia coli. Biotechnology Letters.
244 10.1128/AEM.06017-11 doi Darmawi Juminaga, Edward E. K. Baidoo, Alyssa M. Redding-Johanson, Tanveer S. Batth, Helcio Burd, Aindrila Mukhopadhyay, Christopher J. Petzold & Jay D. Keasling (2011). Modular Engineering of l-Tyrosine Production in Escherichia coli. Applied and Environmental Microbiology.
245 10.1038/75398 doi William R. Farmer & James C. Liao (2000). Improving lycopene production in Escherichia coli by engineering metabolic control. Nature Biotechnology.
246 10.1021/acssynbio.4c00530 doi Dai, Jiu; Geng, Mingjie; Du, Yong; Iqbal, Muhammad Waleed; Yang, Haoyu; Shen, Xiaolin; Wang, Jia; Sun, Xinxiao & Yuan, Qipeng. Microbial Synthesis of Nucleosides: Advances and Prospects. ACS Synthetic Biology. 2025, 14(1), 1-9.
247 10.1007/s10529-016-2104-5 doi Liu, Shuang; Kang, Pei; Cui, Zhenzhen; Wang, Zhiwen & Chen, Tao. Increased riboflavin production by knockout of 6-phosphofructokinase I and blocking the Entner–Doudoroff pathway in Escherichia coli. Biotechnology Letters. 2016, 38(8), 1307-1314.
248 10.1186/s12934-014-0104-5 doi Lin, Zhenquan; Xu, Zhibo; Li, Yifan; Wang, Zhiwen; Chen, Tao & Zhao, Xueming. Metabolic engineering of Escherichia coli for the production of riboflavin. Microbial Cell Factories. 2014, 13(1).
249 10.1016/j.carbpol.2022.120017 doi Hu, Miaomiao; Li, Mengli; Li, Chenchen & Zhang, Tao. Biosynthesis of Lacto-N-fucopentaose I in Escherichia coli by metabolic pathway rational design. Carbohydrate Polymers. 2022, 297, 120017.
250 10.3389/fmicb.2024.1457628 doi Wu, Weibin; Chen, Maosen; Li, Chenxi; Zhong, Jie; Xie, Rusheng; Pan, Zhibin; Lin, Junhan & Qi, Feng. Efficient production of phenyllactic acid in Escherichia coli via metabolic engineering and fermentation optimization strategies. Frontiers in Microbiology. 2024, 15.
251 10.1016/j.jbiotec.2015.05.015 doi Zheng, Zhaojuan; Zhao, Mingyue; Zang, Ying; Zhou, Ying & Ouyang, Jia. Production of optically pure l-phenyllactic acid by using engineered Escherichia coli coexpressing l-lactate dehydrogenase and formate dehydrogenase. Journal of Biotechnology. 2015, 207, 47-51.
252 10.1186/s12934-024-02513-y doi Ke, Qin; Liu, Chang; Zhuang, Yibin; Xue, Yaju; Cui, Zhanzhao; Zhang, Cuiying; Yin, Hua & Liu, Tao. Metabolic engineering of Escherichia coli for high-level production of benzyl acetate from glucose. Microbial Cell Factories. 2024, 23(1).
253 10.3389/fbioe.2022.824859 doi Hao Zhang, Zhong Liang, Ming Zhao, Yanqin Ma, Zhengshan Luo, Sha Li & Hong Xu (2022). Metabolic Engineering of Escherichia coli for Ectoine Production With a Fermentation Strategy of Supplementing the Amino Donor. Frontiers in Bioengineering and Biotechnology.
254 10.4014/jmb.1308.08082 doi Elisa Friska Romasi & Jinho Lee (2013). Development of Indole-3-Acetic Acid-Producing Escherichia coli by Functional Expression of IpdC, AspC, and Iad1. Journal of microbiology and biotechnology.
255 10.1002/bit.28861 doi Niu, Kun; Zheng, Rui; Zhang, Miao; Chen, Mao‐Qin; Kong, Yi‐Ming; Liu, Zhi‐Qiang & Zheng, Yu‐Guo. Adjustment of the main biosynthesis modules to enhance the production of l‐homoserine in Escherichia coli W3110. Biotechnology and Bioengineering. 2024.
256 10.1186/s12934-024-02576-x doi Siyu Zhao, Tangen Shi, Liangwen Li, Zhichao Chen, Changgeng Li, Zichen Yu, Pengjie Sun & Qingyang Xu (2024). The metabolic engineering of Escherichia coli for the high-yield production of hypoxanthine. Microbial Cell Factories.
257 10.1016/j.ymben.2024.11.011 doi Li, Qingchen; Li, Chenxi; Zhong, Jie; Wang, Yukun; Yang, Qinghua; Wang, Bingmei; He, Wenjin; Huang, Jianzhong; Lin, Shengyuan & Qi, Feng. Metabolic engineering of Escherichia coli for N-methylserotonin biosynthesis. Metabolic Engineering. 2025, 87, 49-59.
258 10.1007/s43393-025-00338-3 doi Hou, Minglei; Gao, Shengqi; Wu, Jing; Chen, Sheng & Zhang, Kang. Metabolic engineering of Escherichia coli to enhance L-tryptophan biosynthesis. Systems Microbiology and Biomanufacturing. 2025.
259 10.1007/s00253-010-2994-4 doi Sangkyu Park, Kiyoon Kang, Shin Woo Lee, Mi-Jeong Ahn, Jung-Myung Bae & Kyoungwhan Back (2010). Production of serotonin by dual expression of tryptophan decarboxylase and tryptamine 5-hydroxylase in Escherichia coli. Applied Microbiology and Biotechnology.
260 10.1038/s41540-024-00440-7 doi Khanijou, Jasmeet Kaur; Hee, Yan Ting; Scipion, Clement P. M.; Chen, Xixian & Selvarajoo, Kumar. Systems biology approach for enhancing limonene yield by re-engineering Escherichia coli. npj Systems Biology and Applications. 2024, 10(1).
261 10.1016/j.ymben.2011.08.001 doi Wang, Chonglong; Yoon, Sang-Hwal; Jang, Hui-Jeong; Chung, Young-Ryun; Kim, Jae-Yean; Choi, Eui-Sung & Kim, Seon-Won. Metabolic engineering of Escherichia coli for α-farnesene production. Metabolic Engineering. 2011, 13(6), 648-655.