Escherichia coli BL21(DE3)
Synonyms
Escherichia coli BTY0
Escherichia coli B1
Ancestors
Derived strains
- Escherichia coli BTY1
- Escherichia coli BTY2
- Escherichia coli BTY3
- Escherichia coli BTY0.1
- Escherichia coli BTY0.2
- Escherichia coli BTY0.3
- Escherichia coli BTY0.4
- Escherichia coli BTY0.5
- Escherichia coli BTY0.6
- Escherichia coli BTY0.7
- Escherichia coli BTY0.8
- Escherichia coli BTY0.9
- Escherichia coli BTY0.10
- Escherichia coli BTY0.11
- Escherichia coli BTY0.12
- Escherichia coli BTY0.13
- Escherichia coli BWZ1
- Escherichia coli BWZ2
- Escherichia coli B-Acc
- Escherichia coli B-FabF
- Escherichia coli B-Acc/FabF
- Escherichia coli B-Acs/Acc
- Escherichia coli B-Acs/FabF
- Escherichia coli BL21(DE3) (pACYC-PhlD)
- Escherichia coli PM-14
- Escherichia coli BL21(DE3)/pCTSDT
- Escherichia coli B2
- Escherichia coli B4
- Escherichia coli B7
- Escherichia coli B1/pED
- Escherichia coli B1/pVio
- Escherichia coli B1/pED + pVio
- Escherichia coli BZ
- Escherichia coli BL21(pETDuet-ldhL-fdh)
- Escherichia coli ET00
- Escherichia coli ET02
- Escherichia coli BL21(DE3)/pET300-T5H
- Escherichia coli BL21(DE3)/pCOLADuet-GST∆37T5H+TDC
- Escherichia coli BL21(DE3)/pET300-∆37T5H-RR
Genotype with respect to parental
F− ompT hsdSB (rB−mB−) gal dcm λ(DE3)
Genotype with respect to wild type
F− ompT hsdSB (rB−mB−) gal dcm λ(DE3)Bars (|) indicate differences between strains.
Production
Metabolites | Heterologous | Production type | Production | Biomass | Carbon source | Time | Scale | Ref. |
---|---|---|---|---|---|---|---|---|
malonyl-CoA | Biomass-specific yield | 0.07 nmol/mg DCW | Glucose | Flask | [ 198 ] | |||
acetyl-CoA | Biomass-specific yield | 0.93 nmol/mg DCW | Glucose | Flask | [ 198 ] |
* Inferred from plots using RetroPlot.
References
- Ming-Yue Fang, Chong Zhang, Song Yang, Jin-Yu Cui, Pei-Xia Jiang, Kai Lou, Masaaki Wachi & Xin-Hui Xing (2015). High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway. Microbial Cell Factories.
- Byoungjin Kim, Robert Binkley, Hyun Uk Kim & Sang Yup Lee (2018). Metabolic engineering of Escherichia coli for the enhanced production of l‐tyrosine. Biotechnology & Bioengineering.
- Wenjuan Zha, Sheryl B. Rubin-Pitel, Zengyi Shao & Huimin Zhao (2009). Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metabolic Engineering.
- Dong-Eun Chang, Heung-Chae Jung, Joon-Shick Rhee & Jae-Gu Pan (1999). Homofermentative Production of d- orl-Lactate in Metabolically Engineered Escherichia coli RR1. Applied and Environmental Microbiology.
- Long M, Xu M, Ma Z, Pan X, You J, Hu M, Shao Y, Yang T, Zhang X, Rao Z. Significantly enhancing production of trans-4-hydroxy-l-proline by integrated system engineering in Escherichia coli. Sci Adv. 2020 May 22;6(21):eaba2383.
- Arense, Paula; Bernal, Vicente; Charlier, Daniël; Iborra, José Luis; Foulquié-Moreno, Maria Remedios & Cánovas, Manuel. Metabolic engineering for high yielding L(-)-carnitine production in Escherichia coli. Microbial Cell Factories. 2013, 12(1).
- Hu, Miaomiao; Li, Mengli; Li, Chenchen & Zhang, Tao. Biosynthesis of Lacto-N-fucopentaose I in Escherichia coli by metabolic pathway rational design. Carbohydrate Polymers. 2022, 297, 120017.
- Zheng, Zhaojuan; Zhao, Mingyue; Zang, Ying; Zhou, Ying & Ouyang, Jia. Production of optically pure l-phenyllactic acid by using engineered Escherichia coli coexpressing l-lactate dehydrogenase and formate dehydrogenase. Journal of Biotechnology. 2015, 207, 47-51.