Escherichia coli MG1655
Ancestors
Derived strains
- Escherichia coli S1
- Escherichia coli QZ1111
- Escherichia coli LMJ-1
- Escherichia coli SX1
- Escherichia coli TRTH
- Escherichia coli K-12-Y
- Escherichia coli K-12-A
- Escherichia coli MDS42
- Escherichia coli MG-102
- Escherichia coli MG1655 thrB::Tn5
- Escherichia coli E1
- Escherichia coli TRMG1655
- Escherichia coli DCMG1655
- Escherichia coli MG1655(DE3)
- Escherichia coli MG1655 ΔyhaM
- Escherichia coli MG1655 (pMIV-cysE5, pACYC177)
- Escherichia coli MG1655 (pMIV-cysE5, pACYC-yhaM1)
- Escherichia coli MG1655 (pMIV-cysE5)
- Escherichia coli PA100
- Escherichia coli ita1
- Escherichia coli MEC568
- Escherichia coli A1
- Escherichia coli ZLEcA4
- Escherichia coli ALA1
- Escherichia coli ALA2
- Escherichia coli ALA3
- Escherichia coli ALA4
- Escherichia coli ALA5
- Escherichia coli ALA6
- Escherichia coli ALA7
- Escherichia coli ALA8
- Escherichia coli ALA9
- Escherichia coli ALA10
- Escherichia coli ALA11
- Escherichia coli ALA12
- Escherichia coli ALA13
- Escherichia coli ALA14
- Escherichia coli ALA15
- Escherichia coli ALA16
- Escherichia coli ALA17
- Escherichia coli ALA18
- Escherichia coli ALA19
- Escherichia coli ALA20
- Escherichia coli ALA21
- Escherichia coli ALA22
- Escherichia coli ALA23
- Escherichia coli ALA24
- Escherichia coli ALA25
- Escherichia coli ALA26
- Escherichia coli DPD4193
- Escherichia coli A (pS0, pY0)
- Escherichia coli B (pS0, pY1)
- Escherichia coli C (pS4, pY1)
- Escherichia coli D (pS5, pY1)
- Escherichia coli E (pS4, pY2)
- Escherichia coli F (pS4, pY3)
- Escherichia coli G (pS5, pY3)
- Escherichia coli RF01S
- Escherichia coli RF01T
- Escherichia coli LS01
- Escherichia coli LS02
- Escherichia coli RF02
- Escherichia coli MG1655/p5C-EC10
- Escherichia coli MG1655/p15C-EC10
- Escherichia coli MG1655/p20C-BSrib
- Escherichia coli MG1655/p20C-BS15
- Escherichia coli ET01
- Escherichia coli MGΔtnaA
- Escherichia coli EcoCTs03
- Escherichia coli HK overexpressed
- Escherichia coli K-12 MG1655 ΔldhA
- Escherichia coli K-12 MG1655 ΔadhE
Genotype with respect to parental
F- λ- ilvG- rfb-50 rph-1
Genotype with respect to wild type
F+ (λ) | λ- | F- λ- ilvG- rfb-50 rph-1Bars (|) indicate differences between strains.
Production
Metabolites | Heterologous | Production type | Production | Biomass | Carbon source | Time | Scale | Ref. |
---|---|---|---|---|---|---|---|---|
L-threonine | Titer | 16.55 mg/L | Glucose | 24 h | Flask | [ 188 ] | ||
L-arginine | Titer | 0.0 g/L * | 24.0 OD600* | Glucose | 28 h * | Flask | [ 237 ] | |
L-arginine | Substrate yield | 0.0 g/g of sustrate * | 24.0 OD600* | Glucose | 28 h * | Flask | [ 237 ] |
* Inferred from plots using RetroPlot.
References
- Qian Liu, Yongsong Cheng, Xixian Xie, Qingyang Xu & Ning Chen (2012). Modification of tryptophan transport system and its impact on production of l-tryptophan in Escherichia coli. Bioresource Technology.
- Jun Hyoung Lee, Bong Hyun Sung, Mi Sun Kim, Frederick R Blattner, Byoung Hoon Yoon, Jung Hoe Kim & Sun Chang Kim (2009). Metabolic engineering of a reduced-genome strain of Escherichia coli for L-threonine production. Microbial Cell Factories.
- Hemanshu Mundhada, Jose M. Seoane, Konstantin Schneider, Anna Koza, Hanne B. Christensen, Tobias Klein, Patrick V. Phaneuf, Markus Herrgard, Adam M. Feist & Alex T. Nielsen (2016). Increased production of L-serine in Escherichia coli through Adaptive Laboratory Evolution. Metabolic Engineering.
- Zhang, Y.; Kang, P.; Liu, S.; Zhao, Y.; Wang, Z.; Chen, T. (2017). GlyA Gene Knock-out in Escherichia coli Enhances L-Serine Production without Glycine Addition. Biotechnol. Bioprocess Eng. 22, 390–396.
- Zhu J, Yang W, Wang B, Liu Q, Zhong X, Gao Q, Liu J, Huang J, Lin B, Tao Y. Metabolic engineering of Escherichia coli for efficient production of L-alanyl-L-glutamine. Microb Cell Fact. 2020 Jun 11;19(1):129.
- Yu Deng, Ning Ma, Kangjia Zhu, Yin Mao, Xuetuan Wei & Yunying Zhao (2018). Balancing the carbon flux distributions between the TCA cycle and glyoxylate shunt to produce glycolate at high yield and titer in Escherichia coli. Metabolic Engineering.
- Fuqiang Song, Zhijie Qin, Kun Qiu, Zhongshi Huang, Lian Wang, Heng Zhang, Xiaoyu Shan, Hao Meng, Xirong Liu & Jingwen Zhou (2024). Development of a vitamin B5 hyperproducer in Escherichia coli by multiple metabolic engineering. Metabolic Engineering.
- Björn-Johannes Harder, Katja Bettenbrock & Steffen Klamt (2016). Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli. Metabolic Engineering.
- Wang, HD., Xu, JZ. & Zhang, WG. Metabolic engineering of Escherichia coli for efficient production of l-arginine. Appl Microbiol Biotechnol 106, 5603–5613 (2022).
- Pu, W., Chen, J., Zhou, Y. et al. Systems metabolic engineering of Escherichia coli for hyper-production of 5‑aminolevulinic acid. Biotechnol Biofuels 16, 31 (2023).
- Darmawi Juminaga, Edward E. K. Baidoo, Alyssa M. Redding-Johanson, Tanveer S. Batth, Helcio Burd, Aindrila Mukhopadhyay, Christopher J. Petzold & Jay D. Keasling (2011). Modular Engineering of l-Tyrosine Production in Escherichia coli. Applied and Environmental Microbiology.
- Dai, Jiu; Geng, Mingjie; Du, Yong; Iqbal, Muhammad Waleed; Yang, Haoyu; Shen, Xiaolin; Wang, Jia; Sun, Xinxiao & Yuan, Qipeng. Microbial Synthesis of Nucleosides: Advances and Prospects. ACS Synthetic Biology. 2025, 14(1), 1-9.
- Liu, Shuang; Kang, Pei; Cui, Zhenzhen; Wang, Zhiwen & Chen, Tao. Increased riboflavin production by knockout of 6-phosphofructokinase I and blocking the Entner–Doudoroff pathway in Escherichia coli. Biotechnology Letters. 2016, 38(8), 1307-1314.
- Lin, Zhenquan; Xu, Zhibo; Li, Yifan; Wang, Zhiwen; Chen, Tao & Zhao, Xueming. Metabolic engineering of Escherichia coli for the production of riboflavin. Microbial Cell Factories. 2014, 13(1).
- Hao Zhang, Zhong Liang, Ming Zhao, Yanqin Ma, Zhengshan Luo, Sha Li & Hong Xu (2022). Metabolic Engineering of Escherichia coli for Ectoine Production With a Fermentation Strategy of Supplementing the Amino Donor. Frontiers in Bioengineering and Biotechnology.