Escherichia coli DH5α
Ancestors
Derived strains
- Escherichia coli YF-3
- Escherichia coli DH5α/pTrc99A, pLyc184
- Escherichia coli DH5α/pTrcDx, pLyc184
- Escherichia coli DH5α/pTrcDx-pfkA, pLyc184
- Escherichia coli DH5α/pTrcDx-pgi, pLyc184
- Escherichia coli DH5α/pTrcDx-fbaA, pLyc184
- Escherichia coli DH5α/pTrcDx-tpiA, pLyc184
- Escherichia coli DH5α/pTrcDx-icdA, pLyc184
- Escherichia coli DH5α/pTrcDx-mdh, pLyc184
- Escherichia coli DH5α/pTrcDx-idi, pLyc184
- Escherichia coli DH5α/pTrcDx-idi-fbaA, pLyc184
- Escherichia coli DH5α/pTrcDx-idi-tpiA, pLyc184
- Escherichia coli DH5α/pTrcDx-idi-mdh, pLyc184
- Escherichia coli DHT36
- Escherichia coli DH5α/pCTIP22
- Escherichia coli DH5α/pCIA41
- Escherichia coli DH5α/pCES208
- Escherichia coli wFS
- Escherichia coli aFS
- Escherichia coli aFS-CT
- Escherichia coli aFS-dxs
- Escherichia coli aFS-idi
- Escherichia coli aFS-SN
- Escherichia coli ispAaFS-CT
- Escherichia coli ispAaFS-SN
- Escherichia coli ispANaFS-SN
- Escherichia coli ispALaFS-SN
- Escherichia coli ispALaFS-NA
Genotype with respect to parental
F−, endA1, hsdR17 (r K −, m K + ), supE44, thi-l, λ−, recA1, gyrA96, ΔlacU169 (Φ80lacZ ΔM15)
Genotype with respect to wild type
F−, endA1, hsdR17 (r K −, m K + ), supE44, thi-l, λ−, recA1, gyrA96, ΔlacU169 (Φ80lacZ ΔM15)Bars (|) indicate differences between strains.
Production
Metabolites | Heterologous | Production type | Production | Biomass | Carbon source | Time | Scale | Ref. |
---|---|---|---|---|---|---|---|---|
L-serine | Titer | 1.35 g/L | Glucose | Flask | [ 145 ] | |||
pyruvate | Titer | 2.23 g/L | Glucose | Flask | [ 145 ] |
* Inferred from plots using RetroPlot.
References
- Pengfei Gu, Fan Yang, Tianyuan Su, Fangfang Li, Yikui Li & Qingsheng Qi (2014). Construction of an l-serine producing Escherichia coli via metabolic engineering. Journal of Industrial Microbiology & Biotechnology.
- Hyung Seok Choi, Sang Yup Lee, Tae Yong Kim & Han Min Woo (2010). In Silico Identification of Gene Amplification Targets for Improvement of Lycopene Production▿ †. Applied and Environmental Microbiology.
- Pengfei Gu, Fan Yang, Junhua Kang, Qian Wang & Qingsheng Qi (2012). One-step of tryptophan attenuator inactivation and promoter swapping to improve the production of L-tryptophan in Escherichia coli. Microbial Cell Factories.
- Zhang, Y.; Kang, P.; Liu, S.; Zhao, Y.; Wang, Z.; Chen, T. (2017). GlyA Gene Knock-out in Escherichia coli Enhances L-Serine Production without Glycine Addition. Biotechnol. Bioprocess Eng. 22, 390–396.
- Heyun Wu, Yanjun Li, Qian Ma, Qiang Li, Zifan Jia, Bo Yang, Qingyang Xu, Xiaoguang Fan, Chenglin Zhang, Ning Chen & Xixian Xie (2018). Metabolic engineering of Escherichia coli for high-yield uridine production. Metabolic Engineering.
- Wang, HD., Xu, JZ. & Zhang, WG. Metabolic engineering of Escherichia coli for efficient production of l-arginine. Appl Microbiol Biotechnol 106, 5603–5613 (2022).
- Elisa Friska Romasi & Jinho Lee (2013). Development of Indole-3-Acetic Acid-Producing Escherichia coli by Functional Expression of IpdC, AspC, and Iad1. Journal of microbiology and biotechnology.
-
Niu, Kun; Zheng, Rui; Zhang, Miao; Chen, Mao‐Qin; Kong, Yi‐Ming; Liu, Zhi‐Qiang & Zheng, Yu‐Guo. Adjustment of the main biosynthesis modules to enhance the production of
l ‐homoserine in Escherichia coli W3110. Biotechnology and Bioengineering. 2024.
- Siyu Zhao, Tangen Shi, Liangwen Li, Zhichao Chen, Changgeng Li, Zichen Yu, Pengjie Sun & Qingyang Xu (2024). The metabolic engineering of Escherichia coli for the high-yield production of hypoxanthine. Microbial Cell Factories.